MCP Servers

模型上下文协议服务器、框架、SDK 和模板的综合目录。

MCP server by patrickjaja

创建于 1/14/2026
更新于 about 3 hours ago
Repository documentation and setup instructions

Workoflow MCP Server

MCP (Model Context Protocol) server that bridges local AI tools (Claude Code, Cursor, Windsurf, etc.) with the Workoflow orchestration platform.

Features

  • Token-based authentication: Uses your personal access token from Workoflow
  • Dynamic tool discovery: Lists all tools available in your organization
  • Tool execution proxy: Execute any Workoflow tool from your AI assistant
  • Caching: TTL-based caching for tool definitions
  • OpenTelemetry tracing: Integrated with Phoenix for observability

Quick Start

1. Get Your Token

  1. Log into Workoflow platform
  2. Go to /profile/
  3. Generate or copy your Personal Access Token

2. Configure Your AI Tool

Add to your Claude Code MCP configuration (~/.claude.json or via claude mcp add):

{
  "mcpServers": {
    "workoflow": {
      "transport": "http",
      "url": "http://localhost:9006/mcp",
      "headers": {
        "X-Prompt-Token": "<your-personal-access-token>"
      }
    }
  }
}

3. Run the Server

Local development:

# Install dependencies
pip install -r requirements.txt

# Copy and configure environment
cp .env.example .env
# Edit .env with your settings

# Run the server
cd src && fastmcp run workoflow_mcp.server:mcp --transport http --port 9006

Docker:

docker build -t workoflow-mcp .
docker run -p 9006:9000 --env-file .env workoflow-mcp

Available Tools

Once connected, you have access to three tools:

workoflow_list_tools

Lists all available tools from your Workoflow organization.

workoflow_execute

Execute any tool by name with parameters.

Parameters:
- tool_name: The tool to execute (e.g., "jira_search_123")
- parameters: JSON string of tool parameters

workoflow_refresh

Refresh the cached tool list after adding/removing integrations.

Environment Variables

| Variable | Description | Default | |----------|-------------|---------| | WORKOFLOW_API_URL | Platform API base URL | http://localhost:8000 | | TOOL_TYPES | Comma-separated tool type filter | (all tools) | | CACHE_TTL_SECONDS | Tool cache TTL in seconds | 600 | | OTEL_SERVICE_NAME | OpenTelemetry service name | workoflow-mcp | | OTEL_EXPORTER_OTLP_ENDPOINT | OTLP endpoint for tracing | (disabled) |

Architecture

AI Tool (Claude Code/Cursor)
    │
    │ MCP Protocol (Streamable HTTP)
    │ X-Prompt-Token header
    ▼
┌─────────────────────┐
│  Workoflow MCP      │
│  Server (FastMCP)   │
│  Port 9006          │
└─────────────────────┘
    │
    │ HTTP API
    │ X-Prompt-Token header
    ▼
┌─────────────────────┐
│  Workoflow Platform │
│  /api/mcp/tools     │
│  /api/mcp/execute   │
└─────────────────────┘

Security

  • Token-based: Each user authenticates with their personal access token
  • No stored credentials: MCP server doesn't store any credentials
  • Per-request validation: Token validated on every API call
  • Org-scoped: Token determines which organization's tools you can access

License

Proprietary - Workoflow Platform

快速设置
此服务器的安装指南

安装包 (如果需要)

uvx workoflow-mcp

Cursor 配置 (mcp.json)

{ "mcpServers": { "patrickjaja-workoflow-mcp": { "command": "uvx", "args": [ "workoflow-mcp" ] } } }