MCP server by ncode3
AARI World Model + GDC Security Audit
Producer mindset. Code-first. No GUIs.
A physics-based infrastructure digital twin and security assessment toolkit for the Garage Data Center (GDC). Built for AARI students to learn real infrastructure engineering through AI-native tooling.
What This Is
This repository contains three MCP (Model Context Protocol) servers that turn Claude Code into an infrastructure operator:
| Server | What It Does | |--------|--------------| | Datacenter | Simulates thermal dynamics, detects anomalies, predicts failures | | Deployment | Deploys applications to OpenShift/Kubernetes clusters | | Security | Runs Kali Linux security tools (nmap, nikto) for GDC audits |
Why MCP instead of Streamlit?
Streamlit teaches students to click buttons. MCP teaches students to build AI-native automation. Same pattern used in production systems.
Quick Start
1. Install Dependencies
pip install -r requirements.txt
2. Test the Physics Engine
python -m src.physics
Expected output:
AARI World Model: Thermal Physics Demo
==================================================
[Normal] Peak temp: 65.0°C
[Failure] Peak temp: 178.9°C
3. Run with Claude Code
# Start Claude Code in this directory
claude
# Then ask it to:
> Run a thermal simulation with fan failure at step 30
> Analyze the telemetry for anomalies
> Deploy the digital twin to OpenShift
The Physics
The datacenter simulation models Newton's Law of Cooling with failure cascades:
dT/dt = (k_heating × load - k_cooling × (T - T_ambient) × efficiency) / thermal_mass
Key Parameters
| Parameter | Value | Description |
|-----------|-------|-------------|
| k_heating | 0.08 | Heat generated per % load per minute |
| k_cooling | 0.15 | Cooling coefficient |
| T_ambient | 22°C | Base ambient temperature |
| critical_temp | 85°C | Emergency shutdown threshold |
| fan_degradation | 0.02/min | Efficiency loss during failure |
Failure Cascade
When a fan fails at step 20:
- Step 20: Fan efficiency starts degrading (1.0 → 0.98 → 0.96...)
- Step 55: Temperature hits warning threshold (75°C)
- Step 70: Temperature hits critical threshold (85°C)
- Step 100: Runaway to 178°C without intervention
This is why predictive monitoring matters - catching the trend at step 30 gives you 40 minutes to respond.
MCP Server Details
Datacenter Server (mcp-servers/datacenter/server.py)
Tools:
run_simulation- Execute thermal simulation with configurable parametersdetect_anomaly- Multi-method anomaly detection (threshold, rate-of-change, statistical)full_analysis- Complete pipeline: simulate → detect → predict
Example via Claude Code:
> Run simulation with 150 steps, inject fan failure at step 30, then analyze for anomalies above 70°C
Deployment Server (mcp-servers/deployment/server.py)
Tools:
check_login- Verify OpenShift cluster accessget_pods- List pods in a projectdeploy_app- Deploy container imageget_routes- Get public URLsapply_yaml- Apply Kubernetes manifests
Prerequisites:
# Install OpenShift CLI
brew install openshift-cli # macOS
# or download from Red Hat
# Login to GDC
oc login https://api.gdc.local:6443 --token=<your-token>
Security Server (mcp-servers/security/server.py)
Tools:
check_tools- Verify available scanners (nmap, nikto, gobuster)port_scan- TCP port scanningservice_scan- Service version detectionvuln_scan- Vulnerability assessmentweb_scan- Web application scanninggenerate_report- Compile audit summary
Prerequisites:
# On Kali Linux or install tools manually
apt install nmap nikto gobuster
⚠️ IMPORTANT: Only scan systems you own or have explicit permission to test.
Project Structure
aari-world-model/
├── src/
│ ├── __init__.py # Package exports
│ ├── physics.py # Thermal simulation engine
│ ├── generator.py # Telemetry data pipeline
│ └── anomaly.py # Anomaly detection algorithms
│
├── mcp-servers/
│ ├── datacenter/
│ │ └── server.py # Simulation MCP server
│ ├── deployment/
│ │ └── server.py # OpenShift MCP server
│ └── security/
│ └── server.py # Kali tools MCP server
│
├── claude-tasks/
│ ├── analyze-thermal-anomaly.md
│ ├── deploy-to-openshift.md
│ └── security-audit-gdc.md
│
├── infra/
│ ├── Dockerfile # Multi-stage container build
│ └── deployment.yaml # OpenShift/K8s manifests
│
├── data/ # Generated telemetry (gitignored)
├── reports/ # Generated analysis reports
├── mcp-config.json # Claude Code MCP configuration
└── requirements.txt # Python dependencies
Claude Tasks
Pre-built task definitions in claude-tasks/ that Claude Code can execute autonomously:
analyze-thermal-anomaly.md
Simulates a failure scenario and generates an incident report.
deploy-to-openshift.md
Deploys the digital twin to the GDC OpenShift cluster.
security-audit-gdc.md
Runs a security assessment against GDC infrastructure.
Run a task:
claude "Execute the thermal anomaly analysis task"
Deploy to GDC
Build Container
docker build -t aari-world-model:v1 -f infra/Dockerfile .
Deploy to OpenShift
# Login to Dave's cluster
oc login https://api.gdc.local:6443
# Apply manifests
oc apply -f infra/deployment.yaml
# Verify
oc get pods -n aari-world-model
oc get route -n aari-world-model
Or via Claude Code
claude "Deploy the digital twin to OpenShift and verify it's running"
For AARI Students
This project teaches:
- Physics First - Understand the math before touching tools
- Data Pipelines - Generate, transform, and analyze telemetry
- Anomaly Detection - Multiple methods, defense in depth
- MCP Protocol - How AI agents invoke tools
- Container Deployment - Docker, Kubernetes, OpenShift
- Security Assessment - Ethical penetration testing
Learning Path
| Week | Focus | Files |
|------|-------|-------|
| 1 | Physics simulation | src/physics.py |
| 2 | Data generation | src/generator.py |
| 3 | Anomaly detection | src/anomaly.py |
| 4 | MCP development | mcp-servers/*/server.py |
| 5 | Container deployment | infra/ |
| 6 | Security auditing | mcp-servers/security/ |
The AARI Way
"The cloud is just someone else's computer. Stop renting. Start building."
This project exists because:
- AWS won't teach you infrastructure
- Bootcamps won't teach you physics
- Universities won't teach you production
AARI teaches all three.
Links
- AARI Website: atlanta-robotics.org
- MCP Protocol: modelcontextprotocol.io
- OpenShift Docs: docs.openshift.com
License
Apache 2.0 - Build freely, deploy anywhere.
Questions? nolan@atlanta-robotics.org