MCP Servers

模型上下文协议服务器、框架、SDK 和模板的综合目录。

M
Meta Agent MCP
作者 @lum3on

MCP server by lum3on

创建于 1/4/2026
更新于 about 21 hours ago
Repository documentation and setup instructions

🤖 Meta Agent MCP Server

An intelligent Model Context Protocol (MCP) server that orchestrates multiple AI agents for complex task solving, combining advanced reasoning algorithms with web research capabilities.

Python 3.11+ License: MIT MCP Compatible


🏗️ Architecture

Main Architecture

The Meta Agent MCP Server uses a hierarchical multi-agent architecture where a Meta Orchestrator coordinates specialized agents to handle complex queries:

┌─────────────────────────────────────────────────────────────────────────┐
│                         META ORCHESTRATOR                                │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐    │
│  │    Task     │→ │ Dependency  │→ │  Parallel   │→ │   Result    │    │
│  │  Planning   │  │ Resolution  │  │  Execution  │  │  Synthesis  │    │
│  └─────────────┘  └─────────────┘  └─────────────┘  └─────────────┘    │
├─────────────────────────────────────────────────────────────────────────┤
│                        SPECIALIST AGENTS                                 │
│  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐         │
│  │ 🔍 RESEARCH     │  │ 🧠 REASONING    │  │ 📊 STRATEGY     │         │
│  │ • Web Crawling  │  │ • Beam Search   │  │ • Decision      │         │
│  │ • Deep Crawl    │  │ • MCTS          │  │   Analysis      │         │
│  │ • Data Extract  │  │ • Thought Trees │  │ • Comparisons   │         │
│  └─────────────────┘  └─────────────────┘  └─────────────────┘         │
└─────────────────────────────────────────────────────────────────────────┘

✨ Key Features

🎯 Multi-Agent Orchestration

  • Task Decomposition: Automatically breaks complex queries into agent-specific tasks
  • Dependency Resolution: Topological sorting for optimal execution order
  • Parallel Execution: Runs independent tasks concurrently for speed
  • Error Recovery: Graceful handling of partial failures with retry logic

🔍 Web Research Agent

  • Single URL Crawling: Extract clean markdown from any webpage
  • Deep Crawling: Follow links up to 5 levels deep, crawl up to 50 pages
  • Structured Data Extraction: CSS selector-based data extraction for scraping
  • LLM-Friendly Output: Filters navigation, ads, and non-content elements

🧠 Advanced Reasoning Algorithms

Beam Search

  • Maintains multiple promising reasoning paths simultaneously
  • Evaluates and selects the best paths at each depth level
  • Best for problems with multiple valid approaches

Monte Carlo Tree Search (MCTS)

  • Balances exploration of new ideas with exploitation of promising paths
  • Uses UCB1 algorithm for intelligent path selection
  • Best for complex problems with large solution spaces

📊 Strategy Agent

  • Decision Analysis: Understand key factors, opportunities, and threats
  • Option Comparison: Multi-criteria evaluation with feasibility, impact, and risk scores
  • Strategy Generation: Comprehensive plans with action items and success criteria

🚀 Quick Start

Prerequisites

Installation

# Clone the repository
git clone https://github.com/lum3on/Meta-agent-MCP.git
cd Meta-agent-MCP

# Install dependencies
pip install -e ".[dev]"

Configuration

Create a .env file from the example:

cp .env.example .env

Edit .env with your API key:

# Required
OPENROUTER_API_KEY=your-openrouter-api-key-here

# Optional: Model Configuration
META_AGENT_MODEL=x-ai/grok-4-fast
REASONING_MODEL=anthropic/claude-3-haiku
STRATEGY_MODEL=anthropic/claude-3.5-sonnet

# Optional: Server Configuration
META_AGENT_HOST=localhost
META_AGENT_PORT=8000
LOG_LEVEL=INFO

# Optional: Transport (stdio, sse, or streamable-http)
TRANSPORT=stdio

Run the Server

meta-agent-mcp

Or with Docker:

docker-compose up

🛠️ Available MCP Tools

Web Crawling Tools

| Tool | Description | |------|-------------| | crawl_url | Crawl a single URL and extract content as clean markdown | | deep_crawl | Multi-page crawling with configurable depth (1-5) and page limits (1-50) | | extract_structured_data | Extract structured data using CSS selectors |

Reasoning Tools

| Tool | Description | |------|-------------| | beam_search_reason | Solve problems using Beam Search (configurable beam width 1-10, depth 1-20) | | mcts_reason | Solve problems using MCTS (10-150 simulations, configurable exploration) | | get_reasoning_tree | Visualize the full reasoning tree for a completed session |

Strategy Tools

| Tool | Description | |------|-------------| | analyze_decision | Analyze a decision situation and provide strategic insights | | compare_options | Compare multiple options using structured criteria | | generate_strategy | Generate comprehensive strategic recommendations |

Meta Orchestrator

| Tool | Description | |------|-------------| | meta_agent_query | Main entry point - coordinates all agents for complex queries | | health_check | Check server health and status |


💡 Usage Examples

Research Query

"What are the latest developments in AI agents and their architectures?"

→ Triggers Research Agent for web crawling and information gathering

Reasoning Query

"Walk me through solving this optimization problem step by step"

→ Triggers Reasoning Agent with Beam Search or MCTS

Strategy Query

"Should I use React or Vue for my new project? Compare the options."

→ Triggers Strategy Agent for decision analysis

Combined Query

"Research microservices patterns and recommend an architecture for my e-commerce platform"

→ Triggers Meta Orchestrator coordinating Research + Strategy agents


🐳 Docker Deployment

# Build and run
docker-compose up --build

# Run in background
docker-compose up -d

📁 Project Structure

meta_agent-MCP/
├── src/meta_agent_mcp/
│   ├── agents/           # Agent implementations
│   │   ├── meta.py       # Meta Orchestrator
│   │   ├── research.py   # Research Agent
│   │   ├── reasoning.py  # Reasoning Agent
│   │   └── strategy.py   # Strategy Agent
│   ├── crawling/         # Web crawling with Crawl4AI
│   ├── models/           # Pydantic data models
│   ├── reasoning/        # Beam Search & MCTS algorithms
│   │   ├── beam_search.py
│   │   ├── mcts.py
│   │   └── thought_tree.py
│   ├── tools/            # MCP tool definitions
│   ├── config.py         # Configuration management
│   ├── server.py         # MCP server entry point
│   └── mcp_instance.py   # FastMCP instance
├── tests/                # Test suite
├── docs-next steps/      # Future roadmap documentation
├── .env.example          # Example environment configuration
├── pyproject.toml        # Python project configuration
├── Dockerfile            # Docker configuration
└── docker-compose.yml    # Docker Compose configuration

🗺️ Roadmap

🔬 Phase 1: Deep Reflection Agent (Planned)

Implementation of a Deep Reflection Agent using OODA Loop methodology:

reflection-agent
  • Observe: Capture agent interactions, performance metrics, system state
  • Orient: Pattern recognition, trend analysis, emergent behavior detection
  • Decide: Trade-off evaluation, recommendation generation
  • Act: Configuration optimization, alerts, feedback collection

Key components:

  • Hierarchical reflection (tactical, strategic, meta-cognitive)
  • SQLite + ChromaDB for persistent memory
  • Non-intrusive event-driven integration

🔧 Phase 2: Self-Healing Agents (Planned)

Autonomous fault detection, diagnosis, and recovery using MAPE-K loop:

  • Monitor: Continuous health observation with telemetry
  • Analyze: AI/ML anomaly detection and root cause diagnosis
  • Plan: Policy-based recovery strategy selection
  • Execute: Autonomous reconfiguration and failover
  • Knowledge: Incident storage for adaptive learning

Design principles:

  • Graceful degradation over complete failure
  • Progressive recovery escalation
  • Defense-in-depth with multiple recovery layers

🎯 Future Enhancements

  • [ ] Multi-modal support (images, audio, video)
  • [ ] Streaming responses for long-running operations
  • [ ] Plugin architecture for custom agents
  • [ ] Web UI dashboard for monitoring
  • [ ] Integration with popular IDEs

🔧 Configuration Reference

| Environment Variable | Default | Description | |---------------------|---------|-------------| | OPENROUTER_API_KEY | (required) | OpenRouter API key | | META_AGENT_MODEL | x-ai/grok-4-fast | Model for meta orchestration | | REASONING_MODEL | anthropic/claude-3-haiku | Model for reasoning tasks | | STRATEGY_MODEL | anthropic/claude-3.5-sonnet | Model for strategy tasks | | TRANSPORT | stdio | Transport type: stdio, sse, streamable-http | | TRANSPORT_HOST | 127.0.0.1 | Host for HTTP transports | | TRANSPORT_PORT | 8080 | Port for HTTP transports | | LOG_LEVEL | INFO | Logging level | | DEFAULT_BEAM_WIDTH | 3 | Default beam search width (1-10) | | DEFAULT_MCTS_SIMULATIONS | 50 | Default MCTS simulations (1-150) | | DEFAULT_CRAWL_TIMEOUT | 30 | Crawl timeout in seconds (5-120) |


🧪 Development

# Install dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Type checking
mypy src/meta_agent_mcp

# Linting
ruff check src/meta_agent_mcp

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


🙏 Acknowledgments


Built with ❤️ using the Model Context Protocol
快速设置
此服务器的安装指南

安装包 (如果需要)

uvx meta-agent-mcp

Cursor 配置 (mcp.json)

{ "mcpServers": { "lum3on-meta-agent-mcp": { "command": "uvx", "args": [ "meta-agent-mcp" ] } } }