MCP Servers

模型上下文协议服务器、框架、SDK 和模板的综合目录。

A
Ai Powered Fitness App With MCP

MCP server by firasyazid

创建于 10/30/2025
更新于 about 2 months ago
Repository documentation and setup instructions

AthleTech - AI-Powered Fitness Coaching App

AthleTech is a comprehensive fitness application that leverages AI to provide personalized workout plans and goal roadmaps based on user profiles and fitness objectives.

Project Structure

This is a monorepo containing two main components:

AthleTech/
├── AthleTech-front/    # React Native mobile app (Expo)
└── MCP-backend/        # FastAPI Python backend

Features

  • User Authentication: Secure JWT-based authentication system
  • Personalized Profiles: Detailed user profiles including fitness level, goals, and limitations
  • AI Workout Generation: Custom workout plans generated based on user data
  • Goal Roadmaps: AI-powered fitness goal planning and tracking
  • Cross-Platform: Works on iOS, Android, and Web

Tech Stack

Frontend

  • React Native with Expo
  • TypeScript
  • Expo Router (file-based routing)
  • Axios for API communication
  • AsyncStorage for local data persistence

Backend

  • FastAPI (Python)
  • MongoDB (Motor async driver)
  • JWT authentication
  • LLM integration for AI features
  • Pydantic for data validation

Getting Started

Prerequisites

  • Node.js (v18 or higher)
  • Python 3.10+
  • MongoDB (local or remote instance)
  • Expo CLI

Backend Setup

  1. Navigate to the backend directory:
cd MCP-backend
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Create a .env file (copy from .env.example):
cp .env.example .env
  1. Update the .env file with your configuration:
MONGO_URL=mongodb://localhost:27017
SECRET_KEY=your-secret-key-here
HOST=0.0.0.0
PORT=8000
CORS_ORIGINS=http://localhost:8081
  1. Start the server:
uvicorn app.main:app --reload --host 0.0.0.0 --port 8000

Frontend Setup

  1. Navigate to the frontend directory:
cd AthleTech-front
  1. Install dependencies:
npm install
  1. Create a .env file (copy from .env.example):
cp .env.example .env
  1. Update the .env file with your backend URL:
EXPO_PUBLIC_API_URL=http://192.168.100.32:8000

Note: Replace with your machine's IP address or use http://localhost:8000 for local development.

  1. Start the Expo development server:
npx expo start
  1. Run on your preferred platform:
    • Press i for iOS simulator
    • Press a for Android emulator
    • Scan QR code with Expo Go app for physical device

API Endpoints

Authentication

  • POST /auth/register - Register a new user
  • POST /auth/login - Login and receive JWT token

Workout

  • GET /workout/generate - Generate personalized workout plan (requires authentication)

Goal Roadmap

  • GET /goal-roadmap/generate - Generate fitness goal roadmap (requires authentication)

Environment Variables

Backend (MCP-backend/.env)

  • MONGO_URL: MongoDB connection string
  • SECRET_KEY: JWT secret key (use a strong random string)
  • HOST: Server host (default: 0.0.0.0)
  • PORT: Server port (default: 8000)
  • CORS_ORIGINS: Comma-separated list of allowed origins

Frontend (AthleTech-front/.env)

  • EXPO_PUBLIC_API_URL: Backend API base URL

Security Notes

  • Never commit .env files to version control
  • Use strong, randomly generated SECRET_KEY in production
  • Configure CORS properly for production environments
  • Use HTTPS in production

Development

Running Tests (Backend)

cd MCP-backend
pytest

Linting (Frontend)

cd AthleTech-front
npm run lint

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is private and proprietary.

Contact

For questions or support, please open an issue in the repository.

快速设置
此服务器的安装指南

安装包 (如果需要)

npx @modelcontextprotocol/server-ai-powered-fitness-app-with-mcp

Cursor 配置 (mcp.json)

{ "mcpServers": { "firasyazid-ai-powered-fitness-app-with-mcp": { "command": "npx", "args": [ "firasyazid-ai-powered-fitness-app-with-mcp" ] } } }