MCP Server for Rundeck, for K8s or Docker
Rundeck MCP Server
A Model Context Protocol (MCP) server that provides seamless integration between AI assistants and Rundeck automation platform. This server exposes 9 comprehensive Rundeck tools through the MCP protocol, enabling AI assistants to interact with Rundeck servers in real-time.
🚀 Features
- 9 Rundeck Tools: Complete set of tools for Rundeck management
- Real-time Data: Live connection to Rundeck API
- Docker Integration: Containerized deployment with Rundeck
- Kubernetes Ready: Production-grade K8s manifests with NetworkPolicies
- MCP Protocol: Standard interface for AI assistant integration
- AI Assistant Compatible: Works with any MCP-compatible AI assistant
- Production Ready: Tested and verified working integration
📋 Available Tools
| Tool | Description |
|------|-------------|
| get_rundeck_system_info | Get server status, version, memory, CPU stats |
| list_rundeck_projects | List all available Rundeck projects |
| list_rundeck_jobs | List jobs in a specific project |
| get_rundeck_job | Get detailed job information |
| execute_rundeck_job | Execute jobs with optional arguments |
| get_rundeck_execution | Get execution status and details |
| list_rundeck_job_executions | View job execution history |
| analyze_rundeck_job_performance | Performance analytics for jobs |
| abort_rundeck_execution | Stop running job executions |
🏗️ Architecture
┌─────────────┐ MCP Protocol ┌──────────────┐ Rundeck API ┌─────────────┐
│ AI Assistant│◄──────────────────►│ MCP Server │◄─────────────────►│ Rundeck │
│ │ │ (Docker) │ │ Server │
└─────────────┘ └──────────────┘ └─────────────┘
🐳 Quick Start
Option 1: Docker Compose (Recommended for Development)
# Clone and navigate to directory
git clone <repository>
cd rundeck-mcp
# Set your Rundeck API token
echo "RUNDECK_API_TOKEN=YOUR_RUNDECK_API_TOKEN_HERE" > .env
# Deploy containers
docker-compose up -d
# Check status
docker-compose ps
Option 2: Kubernetes (Recommended for Production)
# Clone and navigate to directory
git clone <repository>
cd rundeck-mcp
# Update API token in k8s/secret.yaml
echo -n "your-actual-token" | base64
# Replace the value in k8s/secret.yaml
# Deploy to Kubernetes
./k8s/deploy.sh
# Or with specific network policy mode
NETWORK_POLICY_MODE=strict ./k8s/deploy.sh
☸️ Kubernetes Deployment
Quick Deploy
# Standard deployment
./k8s/deploy.sh
# Strict security mode
NETWORK_POLICY_MODE=strict ./k8s/deploy.sh
# With monitoring support
NETWORK_POLICY_MODE=monitoring ./k8s/deploy.sh
Network Policy Modes
| Mode | Description | Use Case |
|------|-------------|----------|
| standard | Basic network isolation with external access | Development/Testing |
| strict | Maximum security, minimal network access | High-security environments |
| monitoring | Standard + monitoring namespace access | Production with observability |
Kubernetes Resources
| Resource | Description |
|----------|-------------|
| namespace.yaml | Dedicated rundeck-mcp namespace |
| configmap.yaml | Non-sensitive configuration |
| secret.yaml | API tokens and sensitive data |
| pvc.yaml | Persistent storage for Rundeck data |
| rundeck-deployment.yaml | Rundeck server deployment |
| rundeck-service.yaml | ClusterIP + NodePort services |
| mcp-deployment.yaml | MCP server deployment |
| ingress.yaml | External access via Ingress |
| network-policy*.yaml | Network security policies |
Access Methods
# NodePort (immediate access)
http://localhost:30440
# Port-forward (secure tunnel)
kubectl port-forward service/rundeck-service 4440:4440 -n rundeck-mcp
# Ingress (with DNS setup)
http://rundeck.local
Useful Commands
# Check deployment status
kubectl get pods -n rundeck-mcp
# View logs
kubectl logs -f deployment/rundeck -n rundeck-mcp
kubectl logs -f deployment/rundeck-mcp-server -n rundeck-mcp
# Check network policies
kubectl get networkpolicies -n rundeck-mcp
# Scale deployments
kubectl scale deployment rundeck --replicas=2 -n rundeck-mcp
# Cleanup
./k8s/cleanup.sh
2. Configure MCP Client
For Kiro IDE
Create .kiro/settings/mcp.json in your workspace:
{
"mcpServers": {
"rundeck": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"--network=rundeck-mcp_rundeck-network",
"-e", "RUNDECK_URL=http://rundeck:4440",
"-e", "RUNDECK_API_TOKEN=admin_token_change_me",
"-e", "RUNDECK_API_VERSION=50",
"-e", "PYTHONUNBUFFERED=1",
"rundeck-mcp-rundeck-mcp"
],
"disabled": false,
"autoApprove": [
"list_projects",
"list_jobs",
"get_job",
"get_execution",
"list_job_executions",
"analyze_job_performance",
"get_system_info"
]
}
}
}
Note: Environment variables (RUNDECK_URL, RUNDECK_API_TOKEN, etc.) are automatically loaded from the Docker container's environment, so you don't need to specify them in the MCP configuration.
For Other MCP-Compatible Clients
{
"mcpServers": {
"rundeck": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"--network=rundeck-mcp_rundeck-network",
"-e", "RUNDECK_URL=http://rundeck:4440",
"-e", "RUNDECK_API_TOKEN=admin_token_change_me",
"-e", "RUNDECK_API_VERSION=50",
"-e", "PYTHONUNBUFFERED=1",
"rundeck-mcp-rundeck-mcp"
],
"disabled": false,
"autoApprove": []
}
}
}
3. Test the Integration
Using Kiro IDE
Once the MCP server is configured, you can use the Rundeck MCP tools directly:
# List available MCP tools
mcp_rundeck_list_projects
mcp_rundeck_list_jobs
mcp_rundeck_get_system_info
Or ask Kiro naturally:
- "Get my Rundeck system information"
- "List my Rundeck projects"
- "Show me jobs in the TRIVAGO project"
- "Execute the TEST job"
Using Other MCP Clients
Using your MCP-compatible AI assistant, ask:
- "Get my Rundeck system information"
- "List my Rundeck projects"
- "Show me job execution history"
📁 Project Structure
rundeck-mcp/
├── rundeck_mcp_server.py # Main MCP server implementation
├── docker-compose.yml # Docker services configuration
├── Dockerfile # Container build configuration
├── entrypoint.sh # Container startup script
├── requirements.txt # Python dependencies
├── .env # Environment variables
├── k8s/ # Kubernetes deployment manifests
│ ├── deploy.sh # Automated deployment script
│ ├── cleanup.sh # Cleanup script
│ ├── namespace.yaml # Kubernetes namespace
│ ├── configmap.yaml # Configuration data
│ ├── secret.yaml # Sensitive data (API tokens)
│ ├── pvc.yaml # Persistent volume claims
│ ├── rundeck-deployment.yaml # Rundeck server deployment
│ ├── rundeck-service.yaml # Rundeck services
│ ├── mcp-deployment.yaml # MCP server deployment
│ ├── ingress.yaml # External access
│ ├── network-policy.yaml # Standard network policies
│ ├── network-policy-strict.yaml # Strict security policies
│ └── network-policy-monitoring.yaml # Monitoring support
└── README.md # This file
🔧 Configuration
Environment Variables
| Variable | Description | Default |
|----------|-------------|---------|
| RUNDECK_URL | Rundeck server URL | http://rundeck:4440 |
| RUNDECK_API_TOKEN | Rundeck API authentication token | Required |
| RUNDECK_API_VERSION | Rundeck API version | 50 |
Docker Services
| Service | Port | Description |
|---------|------|-------------|
| rundeck | 4440 | Rundeck server web interface |
| rundeck-mcp | - | MCP server (internal) |
🧪 Testing & Verification
✅ Verified Working Integration
The integration has been tested and verified working with:
- Kiro IDE: Full MCP integration with Docker-based server
- Rundeck: 5.8.0-20241205
- API Version: 50
- MCP Protocol: Compatible with MCP-enabled AI assistants
- Real-time Data: Live system information retrieval
- Docker: Containerized deployment with automatic environment configuration
- Kubernetes: Production-ready deployment with NetworkPolicies
Test MCP Server Connection
# Check container status
docker-compose ps
# View MCP server logs
docker logs rundeck-mcp-server
# Test Rundeck connectivity
docker exec rundeck-mcp-server python3 -c "
import asyncio, os
from rundeck_mcp_server import RundeckMCPServer
os.environ['RUNDECK_URL'] = 'http://rundeck:4440'
os.environ['RUNDECK_API_TOKEN'] = 'YOUR_RUNDECK_API_TOKEN_HERE'
os.environ['RUNDECK_API_VERSION'] = '50'
server = RundeckMCPServer()
print(asyncio.run(server.get_system_info()))
"
Test with Kiro IDE
- Ensure Docker containers are running:
docker-compose ps - Open Kiro IDE in the project directory
- Verify MCP configuration is loaded in
.kiro/settings/mcp.json - Use MCP tools directly:
mcp_rundeck_get_system_info mcp_rundeck_list_projects mcp_rundeck_list_jobs project="TRIVAGO" - Or ask Kiro: "Get my Rundeck system information"
Test with Other AI Assistants
- Open your MCP-compatible AI assistant
- Ensure MCP configuration is loaded
- Ask: "Get my Rundeck system information"
- Verify real-time data is returned
Expected Output
{
"system": {
"rundeck": {
"version": "5.8.0-20241205",
"apiversion": "50",
"build": "5.8.0-20241205",
"serverUUID": "a14bc3e6-75e8-4fe4-a90d-a16dcc976bf6"
},
"stats": {
"memory": {
"free": 428099752,
"total": 918552576,
"unit": "byte"
},
"cpu": {
"processors": 12,
"loadAverage": {
"average": 0,
"unit": "percent"
}
}
},
"os": {
"name": "Linux",
"version": "6.10.14-linuxkit",
"arch": "amd64"
}
}
}
🔍 Troubleshooting
Common Issues
MCP Server Not Starting
# Check logs
docker logs rundeck-mcp-server
# Restart container
docker restart rundeck-mcp-server
Rundeck Connection Failed
# Verify Rundeck is running
curl http://localhost:4440
# Check API token
docker exec rundeck-mcp-server env | grep RUNDECK
AI Assistant MCP Not Working
- Verify MCP configuration file exists (
.kiro/settings/mcp.jsonfor Kiro) - Check MCP server logs in your AI assistant
- Restart AI assistant to reload MCP configuration
- For Kiro: Check the MCP Server view in the feature panel
Health Checks
# Container health
docker-compose ps
# Rundeck health
curl http://localhost:4440/api/50/system/info
# MCP server process
docker exec rundeck-mcp-server ps aux | grep python
📊 Performance
- Memory Usage: ~50MB per container
- Response Time: <2 seconds for most operations
- Concurrent Requests: Supports multiple simultaneous MCP calls
- API Rate Limits: Respects Rundeck API throttling
🔐 Security
- API tokens stored in environment variables
- Container network isolation
- No external ports exposed for MCP server
- Rundeck authentication required
🚀 Production Deployment
Resource Requirements
- CPU: 1 core minimum
- Memory: 2GB minimum (1GB Rundeck + 1GB overhead)
- Storage: 5GB for logs and data
- Network: Internal container networking
Scaling Considerations
- Single MCP server instance per Rundeck server
- Multiple AI assistant instances can connect to same MCP server
- Rundeck handles concurrent API requests
📝 API Reference
System Information
# Get comprehensive system status
await server.get_system_info()
Project Management
# List all projects
await server.list_projects()
# List jobs in project
await server.list_jobs("project-name")
Job Execution
# Execute job
await server.execute_job("job-id", {"param": "value"})
# Check execution status
await server.get_execution("execution-id")
🎯 Example Usage with AI Assistant
With Kiro IDE
Once configured, you can use both direct MCP tool calls and natural language:
Direct MCP Tool Usage:
# Get system information
mcp_rundeck_get_system_info
# List projects
mcp_rundeck_list_projects
# List jobs in a project
mcp_rundeck_list_jobs project="TRIVAGO"
# Execute a job
mcp_rundeck_execute_job job_id="5a2584fb-d01f-496b-a035-830940b53025"
Natural Language with Kiro:
You: "Get my Rundeck system information"
Kiro: [Calls mcp_rundeck_get_system_info]
"Your Rundeck server is version 5.8.0-20241205, running on Linux
with 12 CPU cores and 408 MB free memory..."
You: "List my Rundeck projects"
Kiro: [Calls mcp_rundeck_list_projects]
"You currently have 1 project configured: TRIVAGO project created on
December 20, 2025"
You: "Show me jobs in the TRIVAGO project"
Kiro: [Calls mcp_rundeck_list_jobs with project="TRIVAGO"]
"Found 1 job in TRIVAGO project: TEST job (ID: 5a2584fb-d01f-496b-a035-830940b53025)
in the TEST group, currently enabled and scheduled"
With Other MCP Clients
Once configured, you can use natural language with your AI assistant:
You: "Get my Rundeck system information"
AI: [Calls get_rundeck_system_info via MCP]
"Your Rundeck server is version 5.8.0-20241205, running on Linux
with 12 CPU cores and 408 MB free memory..."
You: "List my Rundeck projects"
AI: [Calls list_rundeck_projects via MCP]
"You currently have 1 project configured: TRIVAGO project created on
December 20, 2025"
You: "What's the server uptime?"
AI: [Calls get_rundeck_system_info via MCP]
"Your Rundeck server has been running for 2.6 minutes, started at
15:47:29 UTC"
🤝 Contributing
- Fork the repository
- Create feature branch
- Test with Docker deployment
- Submit pull request
📄 License
MIT License - see LICENSE file for details
🆘 Support
- Issues: GitHub Issues
- Documentation: This README
- Testing: Use provided test commands
Status: ✅ Production Ready & Verified Working
Last Updated: December 2025
Version: 1.0.0
Tested With: MCP-compatible AI assistants, Rundeck 5.8.0, MCP Protocol
Created By: dinfiesta@gmail.com