MCP Servers

模型上下文协议服务器、框架、SDK 和模板的综合目录。

G
Gemini Media MCP
作者 @CxOAGI

General purpose Gemini image and video generation MCP with image or video generation and editing.

创建于 12/15/2025
更新于 about 15 hours ago
Repository documentation and setup instructions

Gemini Media MCP

MCP server for generating images and videos using Google Gemini and VEO models.

Setup

Prerequisites

  • For video generation (VEO): Google Cloud project with Vertex AI API enabled and a service account with Vertex AI permissions (setup instructions)
  • For image generation only: Gemini API key (setup instructions)

Environment Variables

For Vertex AI (required for VEO video generation):

export GOOGLE_GENAI_USE_VERTEXAI=true
export GOOGLE_CLOUD_PROJECT=your-project-id
export GOOGLE_CLOUD_LOCATION=us-central1
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json

→ See Vertex AI Setup for detailed instructions

Alternatively, for Gemini API (image generation only):

export GEMINI_API_KEY=your-api-key

→ See Gemini API Setup for detailed instructions

Claude Desktop Configuration

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "gemini-media": {
      "command": "uvx",
      "args": ["gemini-media-mcp"],
      "env": {
        "GOOGLE_GENAI_USE_VERTEXAI": "true",
        "GOOGLE_CLOUD_PROJECT": "your-project-id",
        "GOOGLE_CLOUD_LOCATION": "us-central1",
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account.json"
      }
    }
  }
}

Or using Docker (note: DATA_FOLDER must be set to the host path, with matching volume mount):

{
  "mcpServers": {
    "gemini-media": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i",
        "-e", "GOOGLE_GENAI_USE_VERTEXAI=true",
        "-e", "GOOGLE_CLOUD_PROJECT=your-project-id",
        "-e", "GOOGLE_CLOUD_LOCATION=us-central1",
        "-e", "GOOGLE_APPLICATION_CREDENTIALS=/credentials.json",
        "-e", "DATA_FOLDER=/Users/yourusername/gemini-output",
        "-v", "/path/to/service-account.json:/credentials.json:ro",
        "-v", "/Users/yourusername/gemini-output:/Users/yourusername/gemini-output",
        "cxoagi/gemini-media-mcp"
      ]
    }
  }
}

This writes files to your host path and returns paths like /Users/yourusername/gemini-output/images/abc.png that Claude Desktop can open directly. The DATA_FOLDER directory will contain images/ and videos/ subdirectories.

Available Tools

generate_image

Generate images using Gemini or Imagen models.

Parameters:

  • prompt (required): Text description of the image
  • model: GEMINI (default), GEMINI3_PRO, IMAGEN3, IMAGEN4, IMAGEN4_ULTRA, IMAGEN4_FAST
  • image_uri: Input image URI for image-to-image generation
  • image_base64: Base64 encoded input image

generate_video

Generate videos using VEO models (requires Vertex AI).

Parameters:

  • prompt (required): Text description of the video
  • model: VEO2 (default, 5-8s), VEO3 (4/6/8s with audio), VEO3_FAST
  • aspect_ratio: 16:9 (default) or 9:16
  • duration_seconds: Video duration (VEO2: 5-8s, VEO3: 4/6/8s)
  • include_audio: Enable audio generation (VEO3 only)
  • audio_prompt: Audio description (VEO3 only)
  • negative_prompt: Things to avoid in the video
  • seed: Random seed for reproducibility
  • image_uri: Input image URI for image-to-video generation

Google Vertex AI and Gemini Access

Vertex AI Setup (Required for VEO Video Generation)

Step 1: Create a Google Cloud Project

  1. Go to the Google Cloud Console
  2. Click the project dropdown at the top of the page
  3. Click "New Project"
  4. Enter a project name and click "Create"
  5. Note your Project ID (you'll need this later)

Step 2: Enable Vertex AI API

  1. In the Cloud Console, go to "APIs & Services" > "Library" (or visit API Library)
  2. Search for "Vertex AI API"
  3. Click on "Vertex AI API" in the results
  4. Click the "Enable" button
  5. Wait for the API to be enabled (this may take a minute)

Step 3: Create a Service Account

  1. Go to "IAM & Admin" > "Service Accounts" (or visit Service Accounts)
  2. Click "Create Service Account" at the top
  3. Enter a name (e.g., "gemini-media-mcp") and description
  4. Click "Create and Continue"
  5. In the "Grant this service account access to project" section:
    • Click the "Select a role" dropdown
    • Search for "Vertex AI User"
    • Select "Vertex AI User" role
    • Click "Continue"
  6. Click "Done" (you can skip the optional "Grant users access" section)

Step 4: Download Service Account Key

  1. In the Service Accounts list, find the account you just created
  2. Click the three dots (⋮) in the "Actions" column
  3. Select "Manage keys"
  4. Click "Add Key" > "Create new key"
  5. Select "JSON" as the key type
  6. Click "Create"
  7. The JSON key file will automatically download to your computer
  8. Important: Move this file to a secure location and note the path (e.g., ~/credentials/gemini-media-service-account.json)
  9. Security Note: Never commit this file to version control or share it publicly

Step 5: Update Configuration

Use the following values in your configuration:

  • GOOGLE_CLOUD_PROJECT: Your Project ID from Step 1
  • GOOGLE_CLOUD_LOCATION: us-central1 (or your preferred region)
  • GOOGLE_APPLICATION_CREDENTIALS: Full path to the JSON key file from Step 4

Gemini API Setup (Image Generation Only)

For simpler image generation without video capabilities:

  1. Visit Google AI Studio
  2. Sign in with your Google account
  3. Click "Create API Key"
  4. Copy your key (starts with AIzaSy...)
  5. Set the environment variable: export GEMINI_API_KEY=your-api-key

Note: The Gemini API does not support VEO video generation. For video capabilities, you must use Vertex AI.

Contributing

Development Setup

uv sync

Running Tests

uv run pytest

Code Quality

# Type checking
uv run basedpyright src/ tests/

# Linting and formatting
uv run ruff check src/ tests/
uv run ruff format src/ tests/

# Pre-commit hooks
uv run prek

Building Docker Image

docker build -t gemini-media-mcp .

# With specific version
docker build --build-arg VERSION=1.0.0 -t gemini-media-mcp:1.0.0 .

License

MIT

快速设置
此服务器的安装指南

安装包 (如果需要)

uvx gemini-media-mcp

Cursor 配置 (mcp.json)

{ "mcpServers": { "cxoagi-gemini-media-mcp": { "command": "uvx", "args": [ "gemini-media-mcp" ] } } }