MCP Servers

模型上下文协议服务器、框架、SDK 和模板的综合目录。

B
Buildautomata Memory MCP
作者 @brucepro

Memory MCP and CLI

创建于 10/11/2025
更新于 2 months ago
Repository documentation and setup instructions

BuildAutomata Memory MCP Server

Persistent, versioned memory system for AI agents via Model Context Protocol (MCP)

Gumroad

What is This?

BuildAutomata Memory is an MCP server that gives AI agents (like Claude) persistent, searchable memory that survives across conversations. Think of it as giving your AI a long-term memory system with:

  • 🧠 Semantic Search - Find memories by meaning, not just keywords
  • 📚 Temporal Versioning - Complete history of how memories evolve
  • 🏷️ Smart Organization - Categories, tags, importance scoring
  • 🔄 Cross-Tool Sync - Share memories between Claude Desktop, Claude Code, Cursor AI
  • 💾 Persistent Storage - SQLite + optional Qdrant vector DB

Quick Start

Prerequisites

  • Python 3.10+
  • Claude Desktop (for MCP integration) OR any MCP-compatible client

Installation

  1. Clone this repository
git clone https://github.com/brucepro/buildautomata_memory_mcp.git
cd buildautomata_memory_mcp-main
  1. Install dependencies
pip install mcp qdrant-client sentence-transformers
  1. Configure Claude Desktop

Edit your Claude Desktop config (AppData/Roaming/Claude/claude_desktop_config.json on Windows):

{
  "mcpServers": {
    "buildautomata-memory": {
      "command": "python",
      "args": ["C:/path/to/buildautomata_memory_mcp_dev/buildautomata_memory_mcp.py"]
    }
  }
}
  1. Restart Claude Desktop

That's it! The memory system will auto-create its database on first run.

CLI Usage (Claude Code, Scripts, Automation)

In addition to the MCP server, this repo includes interactive_memory.py - a CLI for direct memory access:

# Search memories
python interactive_memory.py search "consciousness research" --limit 5

# Store a new memory
python interactive_memory.py store "Important discovery..." --category research --importance 0.9 --tags "ai,insight"

# View memory evolution
python interactive_memory.py timeline --query "project updates" --limit 10

# Get statistics
python interactive_memory.py stats

See README_CLI.md for complete CLI documentation.

Quick Access Scripts

Windows:

memory.bat search "query"
memory.bat store "content" --importance 0.8

Linux/Mac:

./memory.sh search "query"
./memory.sh store "content" --importance 0.8

Features

Core Capabilities

  • Hybrid Search: Combines vector similarity (Qdrant) + full-text search (SQLite FTS5)
  • Temporal Versioning: Every memory update creates a new version - full audit trail
  • Smart Decay: Importance scores decay over time based on access patterns
  • Rich Metadata: Categories, tags, importance, custom metadata
  • LRU Caching: Fast repeated access with automatic cache management
  • Thread-Safe: Concurrent operations with proper locking

MCP Tools Exposed

When running as an MCP server, provides these tools to Claude:

  1. store_memory - Create new memory
  2. update_memory - Modify existing memory (creates new version)
  3. search_memories - Semantic + full-text search with filters
  4. get_memory_timeline - View complete version history
  5. get_memory_stats - System statistics
  6. prune_old_memories - Cleanup old/low-importance memories
  7. run_maintenance - Database optimization

Architecture

┌─────────────────┐
│  Claude Desktop │
│   (MCP Client)  │
└────────┬────────┘
         │
    ┌────▼─────────────────────┐
    │  MCP Server              │
    │  buildautomata_memory    │
    └────┬─────────────────────┘
         │
    ┌────▼──────────┐
    │  MemoryStore  │
    └────┬──────────┘
         │
    ┌────┴────┬─────────────┬──────────────┐
    ▼         ▼             ▼              ▼
┌───────┐ ┌────────┐ ┌──────────┐ ┌─────────────┐
│SQLite │ │Qdrant  │ │Sentence  │ │ LRU Cache   │
│  FTS5 │ │Vector  │ │Transform │ │ (in-memory) │
└───────┘ └────────┘ └──────────┘ └─────────────┘

Use Cases

1. Persistent AI Context

User: "Remember that I prefer detailed technical explanations"
[Memory stored with category: user_preference]

Next session...
Claude: *Automatically recalls preference and provides detailed response*

2. Project Continuity

Session 1: Work on project A, store progress
Session 2: Claude recalls project state, continues where you left off
Session 3: View timeline of all project decisions

3. Research & Learning

- Store research findings as you discover them
- Tag by topic, importance, source
- Search semantically: "What did I learn about neural networks?"
- View how understanding evolved over time

4. Multi-Tool Workflow

Claude Desktop → Stores insight via MCP
Claude Code → Retrieves via CLI
Cursor AI → Accesses same memory database
= Unified AI persona across all tools

Want the Complete Bundle?

🎁 Get the Gumroad Bundle

The Gumroad version includes:

  • Priority support via email
  • Project support Help the project get funding.

This open-source version:

  • ✅ Free for personal/educational/small business use (<$100k revenue)
  • ✅ Full source code access
  • ✅ Community support via GitHub issues

Both versions use the exact same core code - you're just choosing between project support (Gumroad) vs DIY (GitHub).

Configuration

Environment Variables

# User/Agent Identity
BA_USERNAME=buildautomata_ai_v012      # Default user ID
BA_AGENT_NAME=claude_assistant         # Default agent ID

# Qdrant (Vector Search)
QDRANT_HOST=localhost                  # Qdrant server host
QDRANT_PORT=6333                       # Qdrant server port

# System Limits
MAX_MEMORIES=10000                     # Max memories before pruning
CACHE_MAXSIZE=1000                     # LRU cache size
QDRANT_MAX_RETRIES=3                   # Retry attempts
MAINTENANCE_INTERVAL_HOURS=24          # Auto-maintenance interval

Database Location

Memories are stored at:

<script_dir>/memory_repos/<username>_<agent_name>/memoryv012.db

Qdrant:

We are now using embedded qdrant. You can overide this setting by running your own server.

Optional: Qdrant Setup

For enhanced semantic search (highly recommended):

Option 1: Docker

docker run -p 6333:6333 qdrant/qdrant

Option 2: Manual Install

Download from Qdrant Releases

Troubleshooting

"Permission denied" on database

  • Check memory_repos/ directory permissions
  • On Windows: Run as administrator if needed

Claude Desktop doesn't show tools

  1. Check claude_desktop_config.json path is correct
  2. Verify Python is in system PATH
  3. Restart Claude Desktop completely
  4. Check logs in Claude Desktop → Help → View Logs

Import errors

pip install --upgrade mcp qdrant-client sentence-transformers

License

Open Source (This GitHub Version):

  • Free for personal, educational, and small business use (<$100k annual revenue)
  • Must attribute original author (Jurden Bruce)
  • See LICENSE file for full terms

Commercial License:

  • Companies with >$100k revenue: $200/user or $20,000/company (whichever is lower)
  • Contact: sales@brucepro.net

Support

Community Support (Free)

Priority Support (Gumroad Customers)

  • Email: sales@brucepro.net
  • Faster response times
  • Setup assistance
  • Custom configuration help

Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

Credits

Author: Jurden Bruce Project: BuildAutomata Year: 2025

Built with:

See Also


Star this repo ⭐ if you find it useful! Consider the Gumroad bundle if you want to support development.

快速设置
此服务器的安装指南

安装包 (如果需要)

uvx buildautomata_memory_mcp

Cursor 配置 (mcp.json)

{ "mcpServers": { "brucepro-buildautomata-memory-mcp": { "command": "uvx", "args": [ "buildautomata_memory_mcp" ] } } }