MCP Servers

A collection of Model Context Protocol servers, templates, tools and more.

MCP server by mcpmessenger

Created 11/24/2025
Updated 21 days ago
Repository documentation and setup instructions

LangChain Agent MCP Server

A production-ready MCP server exposing LangChain agent capabilities through the Model Context Protocol, deployed on Google Cloud Run.

GitHub Stars GitHub Forks License

🚀 Overview

This is a standalone backend service that wraps a LangChain agent as a single, high-level MCP Tool. The server is built with FastAPI and deployed on Google Cloud Run, providing a scalable, production-ready solution for exposing AI agent capabilities to any MCP-compliant client.

Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app

✨ Features

  • MCP Compliance - Full Model Context Protocol support
  • LangChain Agent - Multi-step reasoning with ReAct pattern
  • Google Cloud Run - Scalable, serverless deployment
  • Tool Support - Extensible framework for custom tools
  • Production Ready - Error handling, logging, and monitoring
  • Docker Support - Containerized for easy deployment

🏗️ Architecture

| Component | Technology | Purpose | | :--- | :--- | :--- | | Backend Framework | FastAPI | High-performance, asynchronous web server | | Agent Framework | LangChain | Multi-step reasoning and tool execution | | Deployment | Google Cloud Run | Serverless, auto-scaling hosting | | Containerization | Docker | Consistent deployment environment | | Protocol | Model Context Protocol (MCP) | Standardized tool and context sharing |

🛠️ Quick Start

Prerequisites

  • Python 3.11+
  • OpenAI API key
  • Google Cloud account (for Cloud Run deployment)
  • Docker (optional, for local testing)

Local Development

  1. Clone the repository:

    git clone https://github.com/mcpmessenger/LangchainMCP.git
    cd LangchainMCP
    
  2. Install dependencies:

    # Windows
    py -m pip install -r requirements.txt
    
    # Linux/Mac
    pip install -r requirements.txt
    
  3. Set up environment variables: Create a .env file:

    OPENAI_API_KEY=your-openai-api-key-here
    OPENAI_MODEL=gpt-4o-mini
    PORT=8000
    
  4. Run the server:

    # Windows
    py run_server.py
    
    # Linux/Mac
    python run_server.py
    
  5. Test the endpoints:

    • Health: http://localhost:8000/health
    • Manifest: http://localhost:8000/mcp/manifest
    • API Docs: http://localhost:8000/docs

☁️ Google Cloud Run Deployment

The server is designed for deployment on Google Cloud Run. See our comprehensive deployment guides:

Quick Deploy

# Windows PowerShell
.\deploy-cloud-run.ps1 -ProjectId "your-project-id" -Region "us-central1"

# Linux/Mac
./deploy-cloud-run.sh your-project-id us-central1

Current Deployment

  • Service URL: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
  • Project: slashmcp
  • Region: us-central1
  • Status: ✅ Live and operational

📡 API Endpoints

MCP Endpoints

Get Manifest

GET /mcp/manifest

Returns the MCP manifest declaring available tools.

Response:

{
  "name": "langchain-agent-mcp-server",
  "version": "1.0.0",
  "tools": [
    {
      "name": "agent_executor",
      "description": "Execute a complex, multi-step reasoning task...",
      "inputSchema": {
        "type": "object",
        "properties": {
          "query": {
            "type": "string",
            "description": "The user's query or task"
          }
        },
        "required": ["query"]
      }
    }
  ]
}

Invoke Tool

POST /mcp/invoke
Content-Type: application/json

{
  "tool": "agent_executor",
  "arguments": {
    "query": "What is the capital of France?"
  }
}

Response:

{
  "content": [
    {
      "type": "text",
      "text": "The capital of France is Paris."
    }
  ],
  "isError": false
}

Other Endpoints

  • GET / - Server information
  • GET /health - Health check
  • GET /docs - Interactive API documentation (Swagger UI)

🔧 Configuration

Environment Variables

| Variable | Description | Default | Required | |----------|-------------|---------|----------| | OPENAI_API_KEY | OpenAI API key | - | ✅ Yes | | OPENAI_MODEL | OpenAI model to use | gpt-4o-mini | No | | PORT | Server port | 8000 | No | | API_KEY | Optional API key for authentication | - | No | | MAX_ITERATIONS | Maximum agent iterations | 10 | No | | VERBOSE | Enable verbose logging | false | No |

📚 Documentation

📖 Full Documentation Site - Complete documentation with examples (GitHub Pages)

Quick Links:

Build Docs Locally:

# Windows
.\build-docs.ps1 serve

# Linux/Mac
./build-docs.sh serve

Additional Guides:

🧪 Testing

# Test health endpoint
Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/health"

# Test agent invocation
$body = @{
    tool = "agent_executor"
    arguments = @{
        query = "What is 2+2?"
    }
} | ConvertTo-Json

Invoke-WebRequest -Uri "https://langchain-agent-mcp-server-554655392699.us-central1.run.app/mcp/invoke" `
    -Method POST `
    -ContentType "application/json" `
    -Body $body

🏗️ Project Structure

.
├── src/
│   ├── main.py              # FastAPI application with MCP endpoints
│   ├── agent.py             # LangChain agent definition and tools
│   ├── mcp_manifest.json    # MCP manifest configuration
│   └── start.sh             # Cloud Run startup script
├── tests/
│   └── test_mcp_endpoints.py # Test suite
├── Dockerfile               # Container configuration
├── requirements.txt         # Python dependencies
├── deploy-cloud-run.ps1     # Windows deployment script
├── deploy-cloud-run.sh      # Linux/Mac deployment script
└── cloudbuild.yaml          # Cloud Build configuration

🚀 Deployment Options

Google Cloud Run (Recommended)

  • Scalable - Auto-scales based on traffic
  • Serverless - Pay only for what you use
  • Managed - No infrastructure to manage
  • Fast - Low latency with global CDN

See DEPLOY_CLOUD_RUN_WINDOWS.md for detailed instructions.

Docker (Local/Other Platforms)

docker build -t langchain-agent-mcp-server .
docker run -p 8000:8000 -e OPENAI_API_KEY=your-key langchain-agent-mcp-server

📊 Performance

  • P95 Latency: < 5 seconds for standard 3-step ReAct chains
  • Scalability: Horizontal scaling on Cloud Run
  • Uptime: 99.9% target (Cloud Run SLA)
  • Throughput: Handles concurrent requests efficiently

🔒 Security

  • API key authentication (optional)
  • Environment variable management
  • Secret Manager integration (Cloud Run)
  • HTTPS by default (Cloud Run)
  • CORS configuration

🤝 Contributing

We welcome contributions! Please see our contributing guidelines.

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

📜 License

This project is licensed under the MIT License.

🔗 Links

  • GitHub Repository: https://github.com/mcpmessenger/LangchainMCP
  • Live Service: https://langchain-agent-mcp-server-554655392699.us-central1.run.app
  • API Documentation: https://langchain-agent-mcp-server-554655392699.us-central1.run.app/docs
  • Model Context Protocol: https://modelcontextprotocol.io/

🙏 Acknowledgments


Status: ✅ Production-ready and deployed on Google Cloud Run

Quick Setup
Installation guide for this server

Install Package (if required)

npx @modelcontextprotocol/server-langchainmcp

Cursor configuration (mcp.json)

{ "mcpServers": { "mcpmessenger-langchainmcp": { "command": "npx", "args": [ "mcpmessenger-langchainmcp" ] } } }