A CLI tool and MCP (Model Context Protocol) server for querying and analyzing TensorBoard event files without requiring a running TensorBoard server.
tb-query
A CLI tool and MCP (Model Context Protocol) server for querying and analyzing TensorBoard event files without requiring a running TensorBoard server.
Overview
tb-query allows you to directly interact with TensorBoard's events.out.tfevents.* files to extract scalar data, calculate statistics, find correlations, and more. It's particularly useful for:
- Programmatic access to training metrics
- Automated analysis of training runs
- Integration with AI coding agents through MCP
- Quick inspection of TensorBoard logs without starting a web server
Features
- Query scalar data with step and tag filtering
- Find all TensorBoard event files in a directory tree
- List available scalar tags with optional filtering
- Calculate statistics (min, max, mean, std) for specific tags
- Compute correlations between different scalar metrics
- CLI interface for command-line usage
- MCP server for integration with AI coding assistants
Installation
From PyPI
pip install tb-query
From Source
git clone https://github.com/Alir3z4/tb-query.git
cd tb-query
pip install -e .
Requirements
- Python >= 3.11
- tensorboard
- fastmcp
- pandas
CLI Usage
Query Command
Extract scalar data from a TensorBoard event file:
# Query all available tags
tb-query query path/to/events.out.tfevents.12345
# Query specific tags
tb-query query path/to/events.out.tfevents.12345 --tags loss --tags accuracy
# Query with step range filtering
tb-query query path/to/events.out.tfevents.12345 --start_step 100 --end_step 200
# Combine filters
tb-query query path/to/events.out.tfevents.12345 --tags loss --start_step 100 --end_step 200
Output format (JSON):
{
"loss": [
{"step": 100, "value": 0.5},
{"step": 101, "value": 0.48}
],
"accuracy": [
{"step": 100, "value": 0.85},
{"step": 101, "value": 0.86}
]
}
Tags Command
List all available scalar tags in an event file:
# List all tags
tb-query tags path/to/events.out.tfevents.12345
# Filter tags containing specific strings
tb-query tags path/to/events.out.tfevents.12345 --filter loss
tb-query tags path/to/events.out.tfevents.12345 --filter loss --filter accuracy
Output format (JSON):
{
"tags": ["train/loss", "train/accuracy", "eval/loss", "eval/accuracy"]
}
Find Command
Locate all TensorBoard event files in a directory:
tb-query find path/to/logs
Output format (JSON):
{
"event_files": [
{
"path": "path/to/logs/run1/events.out.tfevents.12345",
"created_at": "2025-11-04T10:30:00.123456"
},
{
"path": "path/to/logs/run2/events.out.tfevents.67890",
"created_at": "2025-11-03T15:20:00.654321"
}
]
}
Files are sorted by creation time (newest first).
Steps Command
Get the step numbers for specific tags:
tb-query steps path/to/events.out.tfevents.12345 --tags loss --tags accuracy
Output format (JSON):
{
"loss": [0, 10, 20, 30, 40, 50],
"accuracy": [0, 10, 20, 30, 40, 50]
}
Stats Command
Calculate statistical measures for tag values:
tb-query stats path/to/events.out.tfevents.12345 --tags loss --tags accuracy
Output format (JSON):
{
"loss": {
"min": 0.15,
"max": 2.34,
"mean": 0.85,
"std": 0.42,
"count": 1000
},
"accuracy": {
"min": 0.65,
"max": 0.98,
"mean": 0.87,
"std": 0.08,
"count": 1000
}
}
Correlation Command
Calculate Pearson correlations between scalar tags:
# Basic correlation
tb-query correlation path/to/events.out.tfevents.12345 --tags "loss,accuracy"
# With step range
tb-query correlation path/to/events.out.tfevents.12345 --tags "loss,accuracy" --start_step 100 --end_step 200
# With interpretation
tb-query correlation path/to/events.out.tfevents.12345 --tags "loss,accuracy" --display-interpretation true
# Custom rounding
tb-query correlation path/to/events.out.tfevents.12345 --tags "loss,accuracy" --rounding 6
Output format without interpretation (JSON):
{
"loss": {
"accuracy": -0.9234,
"learning_rate": 0.1234
}
}
Output format with interpretation (JSON):
{
"loss": {
"accuracy": {
"correlation": -0.9234,
"interpretation": "Strong negative correlation"
}
}
}
MCP Server Usage
tb-query provides an MCP (Model Context Protocol) server that enables AI coding assistants to interact with TensorBoard event files. This allows agents to analyze training runs, extract metrics, and provide insights.
Starting the MCP Server
tb-query-mcp
The server will start and listen for MCP connections from compatible clients.
Environment Variable
You can set the TB_QUERY_EVENTS_PATH environment variable to specify a default directory for event files:
export TB_QUERY_EVENTS_PATH=/path/to/tensorboard/logs
tb-query-mcp
This enables the event_files resource, which automatically lists available event files from the specified directory.
Integration with AI Coding Agents
Claude Desktop
Add the following configuration to your Claude Desktop config file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"tb-query": {
"command": "tb-query-mcp",
"env": {
"TB_QUERY_EVENTS_PATH": "/path/to/your/tensorboard/logs"
}
}
}
}
After adding the configuration, restart Claude Desktop. The tb-query tools will be available for Claude to use when analyzing your training runs.
Cline (VS Code Extension)
Add to your Cline MCP settings file (.cline/mcp_settings.json in your workspace):
{
"mcpServers": {
"tb-query": {
"command": "tb-query-mcp",
"env": {
"TB_QUERY_EVENTS_PATH": "/path/to/your/tensorboard/logs"
}
}
}
}
Zed Editor
Add to your Zed settings (~/.config/zed/settings.json):
{
"context_servers": {
"tb-query": {
"command": "tb-query-mcp",
"env": {
"TB_QUERY_EVENTS_PATH": "/path/to/your/tensorboard/logs"
}
}
}
}
Continue (VS Code Extension)
Add to your Continue config file (~/.continue/config.json):
{
"mcpServers": [
{
"name": "tb-query",
"command": "tb-query-mcp",
"env": {
"TB_QUERY_EVENTS_PATH": "/path/to/your/tensorboard/logs"
}
}
]
}
Using with Python Client
You can also integrate tb-query into your own Python scripts using the MCP protocol:
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
server_params = StdioServerParameters(
command="tb-query-mcp",
env={"TB_QUERY_EVENTS_PATH": "/path/to/logs"}
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# Call tools
result = await session.call_tool("list_tags", {
"event_file": "/path/to/events.out.tfevents.12345"
})
print(result)
Available MCP Tools
When running as an MCP server, tb-query provides the following tools:
query
Query scalar data from a TensorBoard event file.
Parameters:
event_file(string, required): Path to the event filetags(list[string], optional): List of tags to query (default: all tags)start_step(integer, optional): Starting step (inclusive)end_step(integer, optional): Ending step (inclusive)
list_tags
Get all available scalar tags with optional filtering.
Parameters:
event_file(string, required): Path to the event filefilters(list[string], optional): Filter tags containing these strings
find_events
Find all TensorBoard event files in a directory and subdirectories.
Parameters:
directory(string, required): Directory path to search
tag_steps
Get the step numbers for specified tags.
Parameters:
event_file(string, required): Path to the event filetags(list[string], required): List of tags
tag_stats
Get statistical measures for specified tags.
Parameters:
event_file(string, required): Path to the event filetags(list[string], required): List of tags
correlation
Calculate correlations between scalar tags.
Parameters:
event_file(string, required): Path to the event filetags(list[string], required): Tags to calculate correlations forstart_step(integer, optional): Starting stepend_step(integer, optional): Ending step
Available MCP Resources
event_files
When TB_QUERY_EVENTS_PATH is set, this resource provides a list of all available event files from the configured directory.
URI: resource://event-files
Example Use Cases
Monitoring Training Progress
# Check latest loss values
tb-query query events.out.tfevents.12345 --tags train/loss --start_step 990
# Compare train and validation metrics
tb-query query events.out.tfevents.12345 --tags train/loss --tags val/loss
Analyzing Model Performance
# Get statistics for key metrics
tb-query stats events.out.tfevents.12345 --tags train/accuracy --tags val/accuracy
# Find correlations between metrics
tb-query correlation events.out.tfevents.12345 --tags "loss,learning_rate" --display-interpretation true
AI Agent Integration
When integrated with AI coding assistants through MCP, you can simply ask:
- "Analyze the latest training run in my logs directory"
- "What's the correlation between loss and learning rate?"
- "Show me the statistics for accuracy metrics"
- "Compare the last 100 steps of train and validation loss"
The AI agent will automatically use the appropriate tb-query tools to fetch and analyze the data.
Python API
You can also use tb-query directly in your Python code:
from tb_query.core import (
query_tensorboard,
get_all_tags,
find_event_files,
get_tag_statistics,
calculate_correlation
)
# Query data
data = query_tensorboard(
"events.out.tfevents.12345",
tags=["loss", "accuracy"],
start_step=100,
end_step=200
)
# Get tags
tags = get_all_tags("events.out.tfevents.12345", filters=["loss"])
# Get statistics
stats = get_tag_statistics("events.out.tfevents.12345", tags=["loss"])
# Calculate correlation
correlation = calculate_correlation(
data,
tags={"loss"},
rounding=4,
display_interpretation=True
)
Automated Analysis Scripts
import json
import subprocess
# Find all event files
result = subprocess.run(
["tb-query", "find", "logs/"],
capture_output=True,
text=True
)
event_files = json.loads(result.stdout)
# Query the most recent file
latest_file = event_files["event_files"][0]["path"]
result = subprocess.run(
["tb-query", "query", latest_file, "--tags", "loss"],
capture_output=True,
text=True
)
data = json.loads(result.stdout)
# Process the data
print(f"Final loss: {data['loss'][-1]['value']}")
Using the Core Library Directly
The primary purpose of tb-query is to provide a Python library for programmatic access to TensorBoard data. All functionality is available through the tb_query.core module:
from tb_query.core import (
query_tensorboard,
get_all_tags,
find_event_files,
get_tag_steps,
get_tag_statistics,
calculate_correlation,
ValidationError
)
# Find all event files in a directory
try:
result = find_event_files("logs/")
event_files = result["event_files"]
print(f"Found {len(event_files)} event files")
# Use the most recent file
latest_file = event_files[0]["path"]
print(f"Analyzing: {latest_file}")
except ValidationError as e:
print(f"Error: {e.message}")
# Get all available tags
try:
tags_result = get_all_tags(latest_file)
all_tags = tags_result["tags"]
print(f"Available tags: {all_tags}")
# Filter tags containing "loss"
loss_tags = get_all_tags(latest_file, filters=["loss"])
print(f"Loss-related tags: {loss_tags['tags']}")
except ValidationError as e:
print(f"Error: {e.message}")
# Query specific tags with step filtering
try:
data = query_tensorboard(
event_file=latest_file,
tags=["train/loss", "val/loss"],
start_step=100,
end_step=500
)
for tag, values in data.items():
print(f"\n{tag}:")
print(f" First value: step={values[0]['step']}, value={values[0]['value']}")
print(f" Last value: step={values[-1]['step']}, value={values[-1]['value']}")
print(f" Total points: {len(values)}")
except ValidationError as e:
print(f"Error: {e.message}")
# Get statistics for tags
try:
stats = get_tag_statistics(latest_file, tags=["train/loss", "train/accuracy"])
for tag, stat in stats.items():
if "error" in stat:
print(f"{tag}: {stat['error']}")
else:
print(f"\n{tag} statistics:")
print(f" Min: {stat['min']:.4f}")
print(f" Max: {stat['max']:.4f}")
print(f" Mean: {stat['mean']:.4f}")
print(f" Std: {stat['std']:.4f}")
print(f" Count: {stat['count']}")
except ValidationError as e:
print(f"Error: {e.message}")
# Get available steps for specific tags
try:
steps = get_tag_steps(latest_file, tags=["train/loss", "val/loss"])
for tag, step_list in steps.items():
print(f"{tag}: {len(step_list)} steps")
print(f" Range: {step_list[0]} to {step_list[-1]}")
except ValidationError as e:
print(f"Error: {e.message}")
# Calculate correlations
try:
# First query the data
data = query_tensorboard(
event_file=latest_file,
tags=None, # Get all tags
start_step=0,
end_step=1000
)
# Calculate correlation for specific tags
correlation = calculate_correlation(
data=data,
tags={"train/loss"}, # Primary tag(s) to correlate against others
rounding=4,
display_interpretation=False
)
print("\nCorrelations with train/loss:")
for other_tag, corr_value in correlation["train/loss"].items():
print(f" {other_tag}: {corr_value}")
# With interpretation
correlation_interpreted = calculate_correlation(
data=data,
tags={"train/loss"},
rounding=4,
display_interpretation=True
)
print("\nCorrelations with interpretation:")
for other_tag, corr_data in correlation_interpreted["train/loss"].items():
print(f" {other_tag}:")
print(f" Correlation: {corr_data['correlation']}")
print(f" Interpretation: {corr_data['interpretation']}")
except ValidationError as e:
print(f"Error: {e.message}")
# Complete analysis workflow
def analyze_training_run(event_file_path: str):
"""Complete analysis of a training run."""
try:
# Get all tags
tags_result = get_all_tags(event_file_path)
all_tags = tags_result["tags"]
# Get statistics for all tags
stats = get_tag_statistics(event_file_path, tags=all_tags)
# Query recent data (last 100 steps)
data = query_tensorboard(event_file_path, tags=all_tags)
# Get the maximum step across all tags
max_step = 0
for tag_data in data.values():
if tag_data:
max_step = max(max_step, tag_data[-1]["step"])
# Query only recent data
recent_data = query_tensorboard(
event_file_path,
tags=all_tags,
start_step=max(0, max_step - 100),
end_step=max_step
)
# Calculate correlations
correlation = calculate_correlation(
data=data,
tags=set(all_tags[:5]), # Limit to first 5 tags to avoid huge output
rounding=4,
display_interpretation=True
)
return {
"tags": all_tags,
"statistics": stats,
"recent_data": recent_data,
"correlations": correlation,
"max_step": max_step
}
except ValidationError as e:
return {"error": e.message}
# Use the analysis function
result = analyze_training_run("events.out.tfevents.12345")
if "error" in result:
print(f"Analysis failed: {result['error']}")
else:
print(f"Analysis complete: {len(result['tags'])} tags analyzed")
print(f"Training ran for {result['max_step']} steps")
All functions in tb_query.core raise ValidationError exceptions for file access or parsing errors, so wrapping calls in try-except blocks is recommended for robust error handling.
Error Handling
tb-query provides clear error messages for common issues:
- File not found: Raised when the specified event file doesn't exist
- Failed to load event file: Raised when the file is corrupted or invalid
- Directory not found: Raised when the specified directory doesn't exist
- Tag not found: Returned in statistics when a requested tag doesn't exist
- No values found: Returned when a tag exists but has no data points
Development
Setup Development Environment
git clone https://github.com/Alir3z4/tb-query.git
cd tb-query
make install
Run Tests
Currently, the code base doesn't include tests and I plan to add them later.
Running the tests
make test
Running the tests with coverage
# Run tests with coverage
make coverage
coverage report
Code Quality
make lint
Pre Commit
There is a makefile task that runs the formatting and type checking. To be used before commiting the code.
make precommit
Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
License
This project is licensed under the GPL-3.0-or-later License - see the LICENSE file for details.
Links
- Homepage: https://github.com/Alir3z4/tb-query
- Repository: https://github.com/Alir3z4/tb-query.git
- Issues: https://github.com/Alir3z4/tb-query/issues
- Changelog: https://github.com/Alir3z4/tb-query/blob/master/ChangeLog.md
Support
If you encounter any issues or have questions, please file an issue on the GitHub repository.